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CONTEMP. PHYS., 1984, VOL. 25, NO. 6, 535-582 

Rayleigh-Benard Convection 

P. Berg6 and M. Dubois, Service de Physique du Solide et de Rtsonance 
Magnttique, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

ABSTRACT. This paper presents a physicist’s approach to Rayleigh-Bbnard convection widely illustrated 
with experimental results. The basis of the mechanism of the instability is simply presented with physical 
reasons for the existence of a critical threshold. 

A detailed examination of the spatial organization is made with discussion of ordered and disordered 
structures. Furthermore it is shown that the measurements of the local velocity give a good quantitative 
description of the convective state. 

A complete parallel between the Rayleigh-BBnard convection near onset and a critical phenomenon is 
given in the framework of a mean field approach, including both spatial as well as temporal effects. Non- 
Boussinesq convection is presented as symmetry breaking, changing the second order transition into a 
(partially) first order transition. 

The last section is devoted to the ever present but still not completely understood question of the 
dynamics of the convective pattern; the importance of the existence and motion of defects is pointed out. 
Finally, a tentative and provisional survey is made of two open questions: the wavenumber selection and the 
approach of turbulence in large aspect ratio cells. 

1. Introduction 
Convection is a very common phenomenon in nature, and has fascinated many people 
for a very long time. Its study and understanding have fundamental importance in 
meteorology, oceanography, geophysics and astrophysics. Moreover thermal insta- 
bilities and related transport processes are involved in practical applications such as 
power engineering, combustion, material science, and space technology. 

More precisely, phenomena as diverse as solar granulation, atmospheric structur- 
ing of planets, continental drift, striations in crystal growth, flame structure, 
atmospheric circulation etc.. . . are all related to thermal convection. 

The origin of the term ‘convection’-from the latin ‘conuectio’-gives an idea of 
‘carrying with‘. It seems to have been applied first to denote the transportation of heat 
through fluid motion. Thermal convection arises when a thermal inhomogeneity exists 
in a fluid. This thermal inhomogeneity is the source of motion through different 
mechanisms (such as surface tension etc.. . .); but, on the other hand, stabilizing effects 
(such as viscosity) tend to dampen these motions. Then, generally, the competition 
between these two opposite effects leads to an instability. The fundamental character- 
istic of such instabilities is the existence of a threshold beyond which there is 
organization of motion into a relatively ordered pattern (J. Wesfreid et al. 1984). 

This paper deals only with Rayleigh-Benard convection which is one of the simplest 
instabilities. It corresponds to the case of a horizontal layer of a homogeneous, 
isotropic and dilatable fluid confined above and below by rigid plates of good thermal 
conductivity. (We shall not consider here non-Newtonian fluids, anisotropic fluids such 
as liquid crystals, mixtures of fluids or convection in porous media which could be a 
part of this field.) The fluid layer is submitted to a purely vertical adverse thermal 
gradient which, owing to buoyancy effects, will initiate destabilizing forces able to give 
rise to sustained motion. 

Though evidences of convective motions had been pointed out by J. Thomson 
(1881-82), the first experimental and systematic work in the field of thermal convection 
was performed by H. BCnard (BCnard 1900) and the first theoretical approach was 
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made by Lord Rayleigh (Rayleigh 19 16), hence the name 'Rayleigh-BCnard 
convection'. 

In fact, Rayleigh established the theory of buoyancy driven convection in order to 
explain, in particular, BCnard's observations. We now know that the theory was not in 
fact relevant in this particular case: BCnard was studying convection in a shallow oil 
layer with an upper free surface for which the surface tension effects are dominant. 

In the case of the 'pure' Rayleigh-Benard convection, the field of investigation is so 
broad that it is very difficult to consider making an exhaustive review, even if only the 
recent studies are considered. Because of this, we have preferred to choose illustrations 
which were principally obtained in our laboratory. 

2. Mechanism of the instability 
2.1. Basic processes and characteristic times 
Consider a horizontal layer of isotropic fluid-water for example-which is confined 
between two horizontal plates of good thermal conductivity to provide perfect 
isotherms at the boundaries. If we apply, during a sufficiently long time, a temperature 
difference AT such that the lower plate is the colder, the heat flux 4 which crosses the 
fluid establishes a linear profile of temperature in the layer. See Figure 1 (a). The heat 
flux which is necessary to maintain this constant gradient is 

AT being the thermal conductivity of the fluid, S the surface area of each plate and d the 
distance between the two plates. 

Iz 
Figure 1. (a) Asymptotic linear temperature profile in a fluid layer submitted to a stabilizing 

temperature gradient. (b)  Asymptotic velocity profile in a fluid layer submitted to a shear 
produced by the translation with velocity I/' of the upper plate. 
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Figure 2. Transitory temperature profile following a sudden change of the temperature at one 
horizontal plate: formation of a transitory boundary layer. 

In the same manner, if we apply a velocity difference between the top and the 
bottom of the layer (supposed here to be at the same temperature) a linear profile of 
velocity is established after a given time (this may be obtained by a translation of the top 
plate in its plane see figure 1 (b)). The force F required to be applied to the top plate with 
surface area S in order to shear the fluid and to maintain constant the velocity gradient 
is 

dV 
dZ  

F = - S q  

where g is the dynamical viscosity of the fluid. 
In the stationary regime, since dV/dZ = V/d,  

.-. V 
F = - S q  

d (3) 

On the other hand, suppose now that we suddenly apply the temperature difference 
AT (or the velocity difference V) to the layer. At the beginning, only a thin fluid layer 
will be heated (or sheared) in the vicinity of the plate that has been suddenly heated (or 
translated): a boundary layer has been formed, inside which the entire temperature (or 
velocity) gradient is localized (see figure 2). 

The propagation of these localized gradients through the whole fluid layer is 
governed by a diffusion equation. The diffusion coefficient of the temperature is 

where C, is the specific heat at constant pressure and po the density. The diffusion 
coefficient of the velocity gradient (more generally of the vorticity) is simply the 
kinematic viscosity v = g/po. 

These coefficients allow us to calculate the order of magnitude of the characteristic 
relaxation times z of the gradients in the layer of depth d. For the temperature: 
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and for the velocity: 

z, N d2/v .  (6) 
The ratio of these times is the Prandtl number which controls the temporal behaviour 
in a fluid layer submitted to the two kinds of gradient. Then in convective motion, 

We may have two opposite situations: 

(a) High Prandtl number fluids: the vorticity diffuses (then the velocity relaxes) 
faster than the temperature. Then the velocity perturbations follow the 
temperature perturbations without delay; one says that the viscous effects are 
dominant. 

(b) Low Prandtl number fluids: the temperature relaxes faster than the vorticity: a 
velocity perturbation may persist even after the thermal cause has disappeared: 
the inertial effects are dominant. 

From these two opposite situations, one can point out the qualitative analogy 
between the Prandtl number and the reciprocal of the Reynolds number Re, because, in 
a flowing liquid, Re measures the balance between inertial terms and viscous terms. 

2.2. Test of the stability of the layer 
We consider now the case in which the lower plate is warmer than the top plate and 

we are at equilibrium, i.e. a constant temperature gradient is established in the layer. 
At first sight, it would seem that the stratification formed by denser layers located 

above less dense layers is necessarily unstable. Let us show that this is not true. In fact 
we must point out that a fluid element such as B in figure 3, which is located in the less 
dense region, is not subjected to any force tending to push it upwards, since its 
horizontal surroundings are of the same density. On the contrary, let us see what 
happens if we initiate the motion of B by a small displacement towards B’. If this 

Figure 3. Displacement of a spherical fluid element in order to examine the different forces 
acting on this element after an initial ascending motion. 
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displacement has been sufficiently rapid so that the temperature relaxation of the 
element is negligible, then this element will be surrounded by denser regions producing 
an archimedean force. This force may sustain the initial ascending displacement. The 
fundamental question about the stability of the layer can be summarized in the 
following question: during the time required for the fluid element to move a distance of 
order of magnitude d,  has the thermal diffusivity relaxed the temperature difference 
between the fluid element and its new surroundings? (Note that this temperature 
difference is necessary in order to have a buoyancy maintaining the motion). So we 
must compare two times: the advection time and the time of thermal relaxation. Let us 
take a purely dimensional approach. After the initial displacement the fluid element is 
subjected to two opposite forces. The first is the archimedean buoyancy force FA which 
is proportional to the acceleration of gravity g,  to the fluid density po, to the volume 
expansion coefficient a, to the temperature difference A T  and to the volume of the 
element r3: 

FA-gap0ATr3 (8) 

secondly we have the viscous force F, whose direction is opposite to that of the motion. 
From the Stokes formula, this force is given by 

F ,  - 6nyr V (9) 

where q is the dynamical viscosity and V the velocity of the fluid element (we suppose 
here that the element is a sphere of radius r).  V is determined by equalizing FA and F,. 
Then we can calculate the time taken by the element to move along d 

d 6ndq 
V gapoATr2 

t=-= 

The motion will be sustained if the thermal relaxation time is’greater than t, z,,, > t i.e. 
d21D,> 6ndq/gpoaATr2.  

It is clear that laige fluid elements are favoured in their motion (high velocity and 
long thermal life time). So if we consider elements whose radius is, in the limit, of the 
order of d,  the condition of motion, and thus of instability, can be written: 

poagA T d 3  
> A  

VDT 
or, since v = ?/Po 

gaATd3 
> A  

VDT 

where A is a constant. 
The expression on the left is called the Rayleigh number Ra. It is the dimensionless 

parameter which governs the stability of a fluid layer subjected to a destabilizing 
vertical thermal gradient. 

Then, if Ra is higher than a certain value A, the motion of the layer will begin. 
This phenomenological approach has the advantage of showing clearly the 

different mechanisms which intervene in the thermal convection without involving the 
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details of the theoretical formulation of the problem. In fact, the full set of equations 
describing the system exactly is formed by 

( 1  3) -the equation of state p = p o ( l  -a") 
-the Navier-Stokes equation 
-the heat or energy equation 
-and the continuity equation which accounts for the mass flux conservation 

and which, for a fluid of nearly constant density, is written 

divV=O (14) 
From this set of equations and the boundary conditions considered above one can 

calculate the exact critical value Ra, beyond which convective motions set in. This 
universal value, independent of the fluid, is Ra, = 1707. This value is valid in the case of 
infinite geometry (great horizontal extent of the layer compared to d )  and very good 
conductivity of the horizontal plates (Normand et al. 1977). 

Some critical temperature differences, corresponding to Ra,, are reported in the 
following table which gives the threshold of the motion for some fluids near room 
temperature (and d = 1 cm). 

Si oil 
air water v = 1 stokes 

Pr 0.7 7 900 

Table 1. Some critical temperature differences corresponding to Ra, for some fluids near room 
temperature. 

When the horizontal extension is finite in comparison with the depth (in fact when it is 
between one and a few times the depth), the Ra value corresponding to the threshold of 
the motion becomes progressively higher than 1707, as the extension becomes lower; 
this increase is due to the stabilizing effects of the lateral boundaries. (Stork and Muller 
1972). 

2.3. Bifurcation. Onset of the instability 
Let us return to the model of the spherical fluid element discussed previously. For 
reasons of symmetry, downwards motion of the denser element has the same 
probability of occurring as the upwards motion of the less dense element; indeed, at the 
same place, one-of the possibilities excludes the other (see figure 4(a)). When convective 
motion sets in, a choice must be made for the velocity direction at a given point in the 
layer. This equiprobability may be shown schematically as in figure 4 (6): at Ra, there is 
a bifurcation to two symmetrical branches. On the other hand the stability of the 
quiescent state has been exchanged with that of the convective state: we say that we 
have an exchange of stabilities at Ra,. These properties of symmetry and bifurcation are 
to be contrasted with what happens when the temperature gradient is horizontal 
instead of vertical (figure 5). In this case, the configuration is immediately unstable: it is 
not necessary to shift the fluid element to test its stability. Any hot element always has 
denser fluid in its horizontal environment and therefore moves immediately upwards 
while any cold element descends, no matter how small the temperature difference. 



Rayleigh-Btnard Convection 54 1 

0 

'0 

. . . . . .  

. . ' .  , .  
. . ,,(J;, ' :. . _ '  . .  , 

. .  
I . .  . 

, . . .  . .  
. .  - .  

. .  . . .  . . . .  . . .  . I .  . .  . : . . . . . . . '  . "  
7/-- 

To+AT 

PJ I + 

Figure 4. (a) Illustration of the competition between ascending motion of a hot element and 
descending motion of a cold element. (b) Illustration of a normal bifurcation at Ra, 
between the steady state (Ra < Ra,) and the convective states. 

There is no threshold for thermoconvection due to horizontal temperature gradients. 
Correspondingly, the ambiguity in the direction of the velocity (downwards or 
upwards) does not exist: there is necessarily ascending motion at the hot plate and 
descending motion at the cold plate. 

In the case of the Rayleigh-Btnard configuration, the choice between one branch of 
the bifurcation or the other is completely arbitrary only in an experiment exempt from 
defects. In practice the smallest imperfection, such as the presence of a horizontal 
gradient at a lateral wall confining the layer, removes the degeneracy. We can use that 
to select the sign of the velocity at the lateral boundaries, for example by playing with 
the experimental situation in crossing A T  = A T .  Generally the lateral boundaries 
confining the fluid, of plexiglass for example, have a higher thermal diffusivity than that 
of the fluid. So, if we exceed AT (from a A T  just below A T )  by a relatively fast heating at 
the bottom plate, the heat diffuses faster in the lateral boundaries which are, then, 



542 P. Bergt and M .  Dubois 

TO 

Figure 5. Fluid layer submitted to a horizontal thermal gradient. 

temporarily warmer than the fluid the induced horizontal gradient favours an 
ascending motion at this boundary which determines the choice of one branch of the 
bifurcation. 

If, on the contrary, we cool the top plate, we can see by a similar argument that the 
convection starts with descending motion at the lateral boundaries. 

All that has been said above holds only at the onset of convection: the structure may 
evolve further as we will see in the following. Nevertheless it is very important to point 
out at the outset the essential role played by the conditions at the lateral boundaries at 
the beginning of convection. 

Let us mention another kind of perturbation which may exist at the lateral 
boundaries in a permanent way. This is the case when the thermal coupling between the 
isothermal horizontal boundaries and the lateral ones is not the same below and above. 
Let us suppose for example a better thermal contact with the bottom plate (see figure 6). 
The temperature of this lateral wall will be then slightly higher than in the fluid, 
producing a permanent uprising current at this boundary (even below the onset of 
Rayleigh-BCnard convection), We will see later that this perturbation may completely 
inhibit the occurrence of the preferred convective structure. 

Finally let us mention a case in which, in the absence of any thermal imperfection of 
the cell, the equiprobability and symmetry of uprising and down going fluid is broken. 
Up to now we have supposed that the physical properties of the fluid which are 
involved in the Rayleigh number are temperature independent (except, of course for the 
density!): this is the so called Boussinesq approximation. In contrast we now assume 
that one of these physical properties varies substantially with temperature so that its 
value is significantly different near the cold plate compared with near the warm plate 
(non-Boussinesq fluid). For example if the viscosity is noticeably higher near the cold 
plate than near the warm plate the warm fluid then has a Rayleigh number which is 
higher than that of the cold fluid and a reasoning similar to that given above (see figure 
4(4) shows that while a small displacement of a hot sphere will sustain motion, the 
same operation made with a cold sphere will not be so effective, and it may even be 
without effect. Clearly uprising motion will be favoured, downgoing streams existing 
simply to ensure conservation of the flux (see figure 7). In the example considered here, 
the driving force of the convection being (mainly) located at the bottom, the velocity 
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F 'igure 6. Dissymmetry of the thermal coupling of a lateral boundary with the top and the 
bottom plates. Here the coupling is imperfect at the top plate producing a breaking in the 
thermal profile as shown at the left of the figure (full line, profile in the boundary; dashed 
line, profile in the layer). The resulting horizontal gradient produces a permanent uprising 
motion at the boundary. 

Figure 7. Scheme of a cellular hexagonal pattern with an uprising motion at the centre of the 
hexagons. 

amplitude of upgoing streams will be higher than that of the downgoing streams?. The 
situation depicted here contrasts strongiy with the case of Boussinesq convection 
studied up to now: the structure with rolls is no longer compatible with the asymmetry 
in the amplitudes of the up and down velocities and the bifurcation is no longer normal. 
We shall see later that this non-Boussinesq convection implies a new kind of structure, 
i.e. the hexagonal pattern; here, and in contrast with what happens with rolls, the sign of 
the velocity in the centre of the hexagons is determined, a priorl, by the nature of the non 
Boussinesq effect. 

The same kind of asymmetry in the motion also occurs in the case of Btnard- 
Marangoni convection, i.e. with a free surface at the top of the fluid. In this case, the 
active force is given by the thermal variation of the surface tension and is only present in 
the upper part of the fluid. In this case, an hexagonal pattern is also formed (see figure 8) 
as pointed out by the pioneering work of Btnard (BCnard 1900). 

t The reverse will be true if, for example, the viscosity were higher at  the hot plate which is the case for gases: 
here, downward velocity amplitude will be higher. 
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Figure 8. Photograph of a cellular pattern observed with a shallow layer of silicone oil heated 
from below and with a free surface at  the top. Visualization is achieved through aluminium 
powder suspended in the oil. Note many imperfections in the hexagonal arrangement. 

3. Spatial organization 
3.1. Natural structures 

We have seen that when the temperature difference applied to a horizontal fluid 
layer is increased beyond a given value (or Ra > Ra,), the fluid begins to move. How 
does it do this? 

To study this, it is necessary to look at the fluid from above. This is the reason why, 
in experiments which deal with this problem, the upper plate is often made of 
transparent sapphire whose thermal conductivity is large compared to that of the usual 
fluids. Furthermore, up to now, the major part of the observations has been performed 
with high Prandtl number fluids (Pr  > 1) near room temperature. Then it is easy to see 
just by looking with the naked eye at dust particles suspended in the fluid that a 
‘dynamical’ structure takes shape: there is an organization of ascending and descending 
motions which carry along the fluid, in rolls turning clockwise or counter-clockwise 
successively in space (see figure 9). These particular motions obviously introduce in the 
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Figure 9. Schematic diagram of the organization of convective motions into rolls. 

f Luid 

. .  

bright dark bright dark 

Figure 10. Principle of the visualization of the convective pattern through the focusing effect, 
due to thermal gradients (‘Shadowgraphic’ method). 

fluid a succession of ‘warm’ and ‘cold’ currents. One can make these currents visible 
(without perturbing the fluid) through the temperature gradients which induce 
refractive index gradients able to refract light beams (see figure 10) so that the fluid acts 
as many local lenses. Then, a parallel light beam which crosses the fluid is focused where 
the refractive index is largest (cold streams) and diverges where the refractive index is 
lowest (warm streams): the light intensity modulation of the beam after crossing the 
convective cell reveals the structure of the motion (see figure 11) with bright lines 
corresponding to downwards motions. All the patterns, shown in the following are 
obtained with this technique. 
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(h) 

Figure 11. Typical disordered structures near the onset of Rayleigh-BCnard convection. 
(Silicone oil, v = 0.05 stokes). (a) rectangular container rx = 38, r,, = 24. (b) cylindrical 
container r = 20. 

If the horizontal extent of the layer is large compared to the depth d, we generally 
obtain (after a transient period which may be very long) a stationary (time- 
independent) roll pattern which has the following properties: 

(a) the axes of the rolls tend to be perpendicular to the lateral walls. 
(b) In the core of the pattern, relatively far from the boundaries, the axes of the rolls 

are equidistant and so locally parallel. 

These two properties are independent of the form of the frame which confines the 
fluid layer horizontally (e.g. rectangular, circular etc.). (Berg6 1981, Gollub et al. 1982 a, 
Stork and Miiller 1975). Except for some particular cases, these two conditions cannot 
be simultaneously fulfilled, creating a topological frustration. This frustration gives rise 
to defects such as dislocations, bending of the rolls, grain boundaries. . . See figure 11. 
(Croquette et al. 1983). Another peculiarity of the motion is that, near onset, the motion 
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Figure 12. Ordered pattern of radial rolls in an annular container. The ratio of the gap to the 
depth is 2,3. (Silicone oil, 005 stokes). 

is to a first approximation two-dimensional: if we follow the motion of a small dust 
particle carried by the convective fluid we notice that its trajectory lies in a vertical 
plane. 

3.2. Ordered structures 
We have seen an important property of the convective motion near onset, i.e., its 
remarkable collective organization, but with breakdown of the spatial order at large 
scale because of the presence of defects. Nevertheless, we can obtain quasi-perfect 
structures with long range order by imposing some constraints. 

These constraints may be geometrical. Knowing the very important role played by 
the lateral boundaries, the spatial properties of the motion depend on the extent of the 
layer. We must therefore define a new parameter, the aspect ratio r which is the ratio of 
a horizontal dimension to the depth. In the case of a cylindrical cell, r = R,/d where R,  
is the radius. For a rectangular frame, the geometry is defined by two aspect ratios 
I-, = L,/d (L, is generally the greater length) and r,, = LJd. If r,, is of the order of d 
(1 < r,, < 3 to S) ,  the geometrical constraint induces a given orientation for the roll axes 
such as to make them perpendicular to the larger side of the cell. The same idea holds in 
an annular frame where the fluid layer is confined between two cylinders, when the gap 
between them is small and the radius of curvature large compared to d. (See figure 12.) 

Alternatively, one can impose local thermal constraints. If we heat the fluid locally, 
for example with a powerful light beam, one induces ascending motion in the 
illuminated area which will initiate local uprising streams. This may stabilize certain 
structures (see figure 13). In this way a structure with concentric rolls may be obtained 
in a cylindrical cell by a small heating at the ring boundary (see figure 14); the pattern 
would otherwise be as shown in figure 11. This method of local heating may also be 
used to induce various structures (within certain limits obviously) whose spatial and 
dynamical properties can be studied by the physicist (Chen and Whitehead 1968). To 
do this, the fluid just below AK is heated locally according to a chosen pattern (see 
figure 15). Then AT is increased beyond A T  and the local heating is suppressed 
allowing the convection to evolve from the imposed pattern. 
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Figure 13. Ordered pattern of straight rolls in a rectangular container rx = 38, ry = 24. (Silicone 
oil 0.05stokes). In spite of the large aspect ratios rx and ry, an ordered structure is 
stabilized by the presence of a small horizontal thermal gradient, purposely created along 
the two shorter sides of the frame. 

Figure 14. Ordered pattern of concentric rolls forced by permanent heating at the cylindrical 
boundary (r = 20, Silicone oil 0.05 stokes). 

Figure 15. Sketch of the experimental set up for structure induction; the arrows stand for the 
powerful light illumination. The perforated mask above the cell reproduces the desired 
pattern; (here the mask will give a phase modulation corresponding to a longitudinal 
mode). 
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We must also note the influence of hydrodynamical constraints: if the convective 
fluid layer is submitted to a mean flow in a horizontal direction, the roll axes tend to be 
aligned along the external flow direction. If the mean flow is vertical, the geometry of 
the pattern depends on this flow: a cellular (hexagonal) pattern is stabilized when this 
flow has large amplitude, whereas rolls are stable for small amplitude of flow. An 
interesting study of this phenomenon has been made by R. Krishamurti (1975), in 
relation to the formation of cloud patterns. 

3.3. Velocityjeld in the case of bidimensional rolls 
Until now, we have spoken of the global spatial organization. To understand more 
quantitatively the spatial properties, we look now at the velocity field as it has been 
measured, point by point, by laser Doppler anemometry;in a quasiperfect structure 
(BergC and Dubois 1981). The examples we give later have been performed in 
rectangular cells with aspect ratios rx = 10, r,, = 3 and rx = 30, r,, = 6 where the rolls, 
parallel to the short side of the cell, are therefore two-dimensional (as shown in 
figure 13). 

The precise study of the velocity field along a pair of rolls shows that we have 
effectively a sinusoidal mode, the two components of the velocity, V,  and V’ (V,: vertical 
and V,: horizontal) varying as: 

V ,  = O V,(z) cos (ax + cp) 

V, = @ V,(z) sin (ax + cp) 

(15 )  

(16) 
(see figure 16), a is the wavenumber = 27cd/A with A the wavelength i.e. the distance 
between two ascending or descending motions. cp is the phase which defines the 
position of the rolls. The continuity equation divV=O, implies that the two 
components V,  and V, are phase-shifted by n/2. 

The z-dependence V,(z) and V,(z) is determined by the horizontal boundary 
conditions at the top and bottom plates, which in the rigid-rigid case are: 

Inthe unrealistic case of free-free boundaries, the z dependence would be sinusoidal; 
in the rigid-rigid case, it is a sum of hyperbolic functions; note only that @V, is maximum 
in the midplan of the layer z = d/2, and that O V, is maximum at two levels z 2: 0.22d and 
z = 0*78d, as can be seen on figure 16 (b) which shows the measured dependence V,(z). 
There is good agreement between the experimental profile and the calculated one 
(BergC 1976; Normand et al. 1977). Note the symmetry between the velocity fields away 
from the plane z = d/2 which imposes V, EO in the mid-plane of the layer. In each point 
of the fluid, the velocity V is given by the combination of V, and V,. The streamlines, 
which are tangent at any point to V, are closed loops inside each roll, as shown in 
figure 17 where parts of the trajectories of dust particles versus time have been followed. 
The boundary between two rolls is a vertical plane. 

If the velocity field is measured in the entire layer, we notice the similarity of the 
velocity amplitude from one roll to another, as shown in figure 18 supporting the 
previous assumption of the presence of a well defined spatial mode. 

Nevertheless, when the Rayleigh number is increased, the study of the velocity field 
(always in the approximation of two-dimensional motion) reveals unambiguously the 
presence of second and third spatial harmonic modes, brought about by the increasing 
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c=0,69 

mm 

Figure 16. Velocity profiles determined by laser Doppler anemometry (Silicone oil, Pr N 900, 
d = 1 cm, rx = 10, r, = 3). (a) Vertical component of the velocity V,  measured at the mid 
height plane as a function of x. (b) Horizontal component of the velocity V ,  as a function of 
2. V ,  is measured along the vertical axis passing through the centre of a roll. 

influence of the non-linear terms. The spatial properties of these harmonic modes are in 
agreement with calculations (Dubois et al. 1978). The main features are shown in figure 
19; the second harmonic may be represented by four rolls, the third harmonic by three 
elongated rolls inscribed in the fundamental roll. The motion is then due to the 
superposition of the fundamental mode and of the harmonics. 
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Figure 17. Successive positions of dust particles suspended in a convecting fluid drawn from a 
movie, image by image. Each dot represents a particle at a given instant. Note that the 
trajectories at the boundary of the roll are vertical lines. ( E  % 2). 

Figure 18. Horizontal component of the velocity versus x measured along 13 rolls. 
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Figure 19. Schematic representation of the spatial properties of the harmonic modes. (a) Second 
harmonic mode (of wavelength A/2). (h)  Third harmonic mode (of wavelength A/3). 

3.4. Heat transport-temperature proJile 
When the velocity is zero (Ra just below Ra,) the heat flux through the layer is carried 
only by conduction of the fluid, and the isothermal lines are horizontal and equidistant. 

When convective motions are present, the heat flux is carried by conduction and by 
(vertical) convection. Vertical uprising streams such as BB’, are warmer than the mean 
temperature whereas descending motions like AA’ are colder (see figures 20(a) and 
20 (b)) (at 0, the centre of the roll, the temperature is not perturbed owing to the absence 
of motion). These motions produce a distortion of the isothermal lines which are either 
pinched or dilated in the region of the vertical streams. One can see in figure 20 (c), a 



Rayleiyh-B6nard Convection 553 

Warm 

Cold Cold 

Figure 20. Relation between the velocity field and the local temperature of the fluid. (a) 
Schematic diagram of the stream lines. (b) Maximum vertical streams. (c )  Interference 
fringes with represent isotherm lines in a vertical plane. (Water, E = 1.2, from R. Farhadieh 
eta[. 1974.) ( d )  Temperature profile in the mid height plane ofthe layer as deduced from (c). 
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representation of such isothermal lines measured in a layer of convecting water using 
interferometric techniques (Farhadieh and Tankin 1974). From these isothermal lines 
one can deduce the temperature at  any point of the layer, for example in the mid height 
plane; the result is shown in figure 2 0 ( d )  and one can see, as also for the velocity, that 
near the onset of convection, the temperature variation versus x is sinusoidal around 
the mean temperature of the layer ( T ) =  T o + A T / 2  (see also Buhler et al. 1979). 

One can clearly see in figure 20(c) that the isotherms are closely spaced (large 
thermal gradients) near the horizontal boundaries, this effect being more and more 
important as Ra is increased. 

Indeed an important consequence of the convective motions is an increase of the 
heat flux 4 crossing the layer. Below A T ,  4 is only due to the conduction 4 = +cond. 

When the motion is present, the fluid velocity entails a supplementary heat flux   on,, 
and then the total heat flux ~ = ~ c o n d + ~ c o n u  is higher than it would be in a solely 
conductive state. 

This is expressed by the Nusselt number: 

with AT, the thermal conductivity of the fluid (see formula (1)). 
So N u =  1 provided that Ra<Ra,; for R a a R a ,  the Nusselt number increases, 

reflecting the increasing part of the convection in the heat transport (Koschmieder and 
Pallas 1974, Ahlers 1974). An example is given in figure 21 (from Zamora and Rey de 
Luna 1984). 

Ra/Ra, 

0 1 2 3 4 5 6 7 8 9 1 0  
Figure 21. Variation of the Nusselt number versus Ra/Ra, (Silicone oil v = 3 5  stokes, from 

Zamora et al. 1984). 
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Figure 22. Schematic representation of the two thermal boundary layers. 

Observation of what happens in the layer reveals that the process of heat transport 
depends on the position in the layer. In the central part (z - d/2), the vertical velocity V ,  
is large and the convection of the heat is dominant. By contrast, near the horizontal 
boundaries where V,  vanishes, the heat flux must be transported mainly by conduction; 
then it is natural that most of the thermal gradient will be concentrated in these two 
sublayers in order to favour conduction (see figure 22). These two sublayers, where the 
major part of the thermal gradient is applied, are called thermal boundary layers and 
play a leading role in subsequent instabilities occurring at high Ra numbers (at least 
with high Pr fluids). 

4. Rayleigh-BCnard convection as a phase transition 
4.1. Stability diagram 
Up to now, we have seen that there is a transition at A T  which consists in the 
establishment of convective motions. Moreover perfect structures (as well as imperfect 
ones, but locally for them) reveal the presence of a given spatial mode, under fixed 
conditions. This mode, defined by its wavenumber a or its wavelength A, is not unique. 
It depends not only on the Rayleigh number, but also on the Prandtl number of the 
fluid considered and on other parameters. So the problem is to know what are the 
stable modes of the system and how the preferred mode is chosen. 

From a theoretical point of view, a good test is to investigate the response of the 
layer to an infinitesimal velocity disturbance 6A such as a single Fourier mode 
(figure 23 (a)) 

2nx 
6A= ACOS- 

A 

where x is an horizontal co-ordinate and A the wavelength of the Fourier mode which 
serves to test the stability of the layer. The problem now has two parameters, the 
Rayleigh number Ra and A the wavelength of the disturbance. The system is unstable if 
A increases with time for one or more values of A. 

One usually assumes that: 

A = A ,  exp (at) with a =f(A) (19) 
then a > 0 means that an infinitesimal disturbance of given A is amplified so that the 

system is unstable. 
a = 0 means that the system is marginally stable (neutral stability) 
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a=O 

t 
Figure 23. (a) Velocity perturbation with wavelength A, used to test the stability of the layer. 

(h)  Time evolution of the amplitude of this perturbation for different u. 

o<O means that the system is stable, the initial disturbance of wavelength A 
being damped as shown schematically in figure 23 b. 

The method of this linear analysis of stability is quite classical the result is very 
important and shown schematically in figure 24 on a (Ra,a) diagram, a being the 
dimensionless wavevector of the Fourier mode a = 27cd/A. In this figure, the curve of 
neutral stability is given by o = 0. All the points located below this curve correspond to 
a stable situation (no convection). The minimum Ra,, a, gives the critical onset of 
convection (for large containers), Ra, = 1707, a, = 3.1 17. 

This means that, near the critical onset Ra,, the preferred mode for the convective 
structure is a Fourier mode of wavelength Ac=2nd/a,-2d. But, in principle, for 
supercritical Ra numbers, a whole range of values of A is possible. In fact, a non linear 
analysis of the stability problem gives a curve which is inside the neutral stability curve 
(Eckhaus instability curve) so that the range of allowed A is restricted (in infinite 
geometry). The presence of lateral boundaries in the layer (the case of finite geometry of 
practical interest) restricts again the allowed range of A, though many questions remain 
today about this problem. 

Nevertheless, the fact that only a small range of values of A is stable may be roughly 
understood by considering a criterion for optimization of the dissipation: too large a 
wavelength would increase the viscous dissipation on the horizontal part of the 
trajectories, while on the other hand too small a wavelength would increase by too 
much the horizontal heat flux between warm and cold streams. Outside the domain of 
stability for rolls, but inside the marginal stability curve, different instabilities may 
appear; these are defined by particular organizations of the motion (zig-zag, cross-rolls 
and others.. .) which generally tend to transform the actual wavenumber to a more 
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Figure 24. Stability diagram in the plane Ra, a. Full line represents the marginal stability curve, 

the dotted line the Eckhaus stability curve. 

stable wavenumber (inside the stable domain of the rolls). The domain of existence of 
these different patterns varies with the Prandtl number; details can be found in the 
paper by F. H. Busse (1978). 

4.2. Mean field approach 
At Ra, we have symmetry breaking between a disordered phase (null velocity, 
invariance of the properties of the layer to translations, high symmetry phase) and an 
ordered one (ordered rolls are present, the symmetry is lowered). This resembles, for 
example, a transition between the ferromagnetic and paramagnetic phases at the Curie 
point T,, where in the ferromagnetic phase (of lower symmetry) the magnetization 
(order parameter) vanishes at T,  when the paramagnetic (higher symmetry) phase 
appears (figure 25). By analogy with the Landau approach to phase transitions, we can 
take the velocity Vas the order parameter and define a Landau pseudo-potential which 
reflects the state of the system. We have seen that the stability of a physical system can 
be tested from its response to a small perturbation. A fluid layer is stable if a small 
velocity perturbation applied to the fluid relaxes to zero, as a ball placed on a concave 
surface returns to its equilibrium position at the bottom of this surface. Then the 
potential 4 plotted versus the velocity I/ (see figure 26) should have its concavity 
upward in order to represent a stable state. 

Following Landau, one expands 4 as 

a a a4 
2 3 4 

4=4,,+a, Y+? v2 + 3 v3 + - v4+. 

We have previously seen that, in the Boussinesq approximation, upgoing streams 
have the same properties as downgoing streams. The invariance of the properties under 
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Curie point a t  T, 

t" 
Higher symmetry 
Paramagneti 
phase 

High Tc Low - Temperature 
Figure 25. Magnetization M of a ferromagnet in the vicinity of the Curie point. This behaviour 

must be compared to that ofthe velocity amplitude as a function of Ra near the onset of the 
convection, see figure 28. 

I d  

~ X A X 

Stable Unstable 
(4 (4 

Figure 26. Scheme of the stability of a system according to the shape of the potential 4. 

a change of I/ to - V implies that 4 must be invariant under the same change. So the 
odd terms must cancel and 

Since, when Ra < Ra,, V = 0 then a ,  > 0 and for Ra > Ra,, V #  0 and a, < 0, with a2 
varying as (Ra-Ra,); see figure 27. 
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I 

Vequ. 0 Vequ. 

Figure 27. Dependence of the pseudo-potential CD as a function of the velocity V for Ra > Ra, 
and Ra < Ra,. 

Figure 28. Variation of the maximum amplitude of the horizontal component of the velocity 
versus the temperature difference applied to the layer ( d =  1 cm, silicone oil v = 1 stokes). 
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I 1 A .  . . .  1 .  

0.1 0.5 1 5 &  
Figure 29. &-dependence of the maximum vertical velocity component. (d = 1 cm, v 2 1 stokes). 

Steady equilibrium of the system is obtained for d 4 / d V =  0. For Ra > Ra,, we obtain 

V=O which is clearly unstable and 

three solutions for the velocity: 

with 

Ra - Ra, 
= E .  

Rac 
This very important result shows that the equilibrium amplitude of the convective 

velocity has to vary as the square root of the departme from the threshold Ra,. We find 
here the classical exponent /?= 1/2 of the convergence of the order parameter in a 
second order phase transition in the mean field approach. The measurements of the 
maximum amplitude of V, and V,  are in very good agreement with this approach (Berge 
1976); in figure 28, we see clearly the existence of the threshold which corresponds here 
to Ra,= 1600+ 100. The variation of the velocity amplitude around the transition 
corresponds to a normal bifurcation (vertical tangent at the critical point AT) and the 
&-dependence obeys very well the expected power law cl/' (figure 29). 

The exact value of the velocity amplitude, in the steady state, can be calculated from 
non linear theory. For the maximum value of the vertical V,  component (the maximum 
which is located at the mid-height of the layer z = d/2), it is found that far away from the 
influence of the lateral boundaries (Normand et a!. 1977) 
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Here a is the wavenumber and R(') is a polynomial function of the Prandtl number 
which, for Pr >> 1 and a = a,, is equal to R(') = 203 1. Note that the velocity scales as 
V -  D,/d.  

For a=a,=3.117, d = l c m  and a silicone oil with D,=1.14 10-3cmZs-1 the 
calculated amplitude of the fundamental sinusoidal mode of convection is 

Vf=135pms-' at ~ = l  

For a, = 3.1 17 the cross-section of the rolls is a square and the maximum amplitude 
"V'(z) at z = 0.22d and z = 0.78d (see figure 16 (b)), has within 2% the same value as Vj :  

V:=133pms-' at ~ = l  

The comparison between these theoretical results and the experimental measure- 
ments is excellent; for d = 1 cm and silicone oil, it was found for E = 1 with Pr  = 900: 

V;  measured= 140+ 10pms-' 

VL measured=132+ 10pms-' 

The amplitudes of the second and third harmonics modes V2 and V3 respectively 
have also been calculated (Busse 1967 a, Dubois et al. 1978 b); it is expected that V2 
should vary as E and V3 as c l" .  The measurements of these amplitudes by spatial 
Fourier analysis have given results in good agreement with these predictions (see figure 
30) (Dubois and Berg6 1978). These amplitudes depend on the actual wavenumber and 
the experimental results agree with the Busse calculations. 

Let us return to the Landau potential in order to look now at the transient 
behaviour of the velocity. 

If we set: u4= 1/Vg 

We get: 

Vy = 0 v, (z = d/2): 

V' 1 v' 
q 5 = 4 0 - E -  + - -. 2 vg 4 

The dynamical response can be found if we notice, by analogy with what happens to 
a ball displaced from its equilibrium position at the bottom of a concave surface, that 

For dimensional reasons ([4] =L?T-') r is the reciprocal of a characteristic time 
r = TO ' and finally one gets 

dV V 3  z -=&I,-. 
dt V: 

From this equation we can derive the transient behaviour of I/: at small E value and 
short times (V small, V 3  << V), zo dV/dt N EVmeaning that the initial slope dV/dt tends to 
zero with E; then the response time of the instability diverges at E = 0 as: 

z = TOE -1 (27) 

This fundamental phenomenon is named 'critical slowing down' by analogy with 
what happens in critical phenomena where the time dependence of the spontaneous 
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Figure 30. &-dependences of the amplitude of the harmonic modes in comparison with that of 
the fundamental mode (d = 1 cm, v N 1 stokes a = uJ. 

fluctuations is considerably slowed near the critical point. Notice that for long times, 
the amplitude I/ tends to a limit owing to the non-linear terms in the amplitude 
equation. 

zo scales as d2/D, ,  the vertical thermal diffusion time of the layer, and its value is: 

d2  1 + 1.954Pr 
D, 38.44Pr 

TO=- (rigid-rigid boundaries). 

In the case of Rayleigh-B6nard convection, that means that if we perturb the fluid 
by rapidly increasing the temperature difference AT by a small amount, the subsequent 
evolution to the new equilibrium will show an exponential time dependence with a 
characteristic time z which depends on the E value (Sawada 1978, Wesfreid et al. 1978). 
Measurements at different Rayleigh numbers have given the variation shown in figure 
31 in the case of experiments with silicone oil. The power law T = T , , E - ~  is accurately 
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Figure 31. &-dependence of the convective characteristic time. 

verified and the value of z0 is in good agreement with the expected value. (In the case 
reported here, zo calculated from the experiment is T~ = 20 f 4 sec), (Wesfreid et ul. 
1978). 

4.3. More about the critical properties: the spatial effects 
In addition to the critical slowing down, second order phase transitions are 
characterized by critical spatial correlation effects: more precisely, if the order 
parameter is locally perturbed from its mean value, this perturbation occupies in fact 
some spatial extension in the critical medium; this extension is measured by the 
correlation range 5 which diverges when the critical point is approached. In the 
Rayleigh-BCnard instabillity the analogy is the following: far from the lateral 
boundaries we have a sinusoidal Fourier component with an asymptotic amplitude 
V*.  In contrast, near a lateral boundary the amplitude of this Fourier mode has to 
vanish (V=O at all the boundaries). The question is: what is the spatial extent of the 
perturbation (V=O) imposed by the lateral boundaries? The answer can be found in the 
marginal stability curve Ra =f(a). At a given supercritical Ra number, we have a finite 
range Au of allowed wavevectors. The fit with V= 0 at x = 0 (boundary) and V= V1 far 
from the boundary is simply related 'through a Fourier transform between the 
reciprocal space (a) and the direct space (x) (see figure 32). 

A range Au of wavevectors implies a spatial width for the modulation of the 
sinusoide V = f ( x )  which is 

1 
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Figure 32. Spatial correlation effect. The correlation length ( in the direct space is inversely 
proportional to the allowed bandwidth ha inside the marginal stability curve. 

Approximating the Ra = f ( a )  marginal stability curve by a parabola means that 

Aa = (Ra - Ra,)li2, (30) 

, 5-(0(Ra-Ra,)-"2. (3 1) 

then 

The supercritical correlation length ( + diverges when Ra-Ra, with a classical 
exponent v in the field of critical phenomena ( v =  l j2 in the mean field approach). 

Thus, the perturbation of a lateral boundary affects the amplitude of the envelope of 
the spatial dependence V = f ( x )  up to distances of about 5' which can be large if we are 
near the threshold Ra,. Then a negative curvature of the envelope, d2V/8x2 < 0, is 
produced. 
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In the same manner, if, instead of perturbing rolls by imposing V =  0, we perturb a 
quiescent layer which is slightly subcritical (Ra < Ra,) by a local velocity, we can induce 
spatially damped rolls (subcritical rolls) over a range of about <-, 5 -  having the same 
critical dependence as t+ ,  the supercritical correlation length. Here, by inducing 
subcritical damped rolls, we impose a positive curvature on the envelope i.e. 

So, in order to account for the spatial effects, we have to add a term in the amplitude 
a2v/a2x > 0. 

equation such as 

dV v 3  , a w  
Z,-=&V- - + t o y  

dt v; ax (32) 

for E > 0 and E should be replaced by - J E ~  for E < 0. 
This term a2V/ax2 due to spatial inhomogeneities acts as a force term. When it is 

negative, it represents a stabilizing effect; when it is positive it may balance the 
stabilizing effects (dominant when E <  0) and induce motions. 

Exact solutions of this equation show that the envelopes are the following: 

for E > O  and V=O at 
X 

V= V' tanh 
5 

x = o  

(33) 

with 

+ = J 2 l o E -  

20 
boundary 
cell 

A l l  1 ' . I 

I 

30 40 50 

Figure 33. Velocity amplitude versus the distance x to the lateral boundary, for two E values (Si 
oil v=0,56stokes). Note the strong influence of the boundary for the lower E value which 
extends for 10 rolls. 
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Figure 34. Log-log plot of the measured correlation length versus E for supercritical Ra values. 

for E < 0 (subcritical induced rolls) and V =  VB at x = 0 

V =  vBexp ( -  I I/<-) 
with 

(34) 

to is an universal value, for as we have said before, it is only related to the marginal 
stability curve; to = 0.385d. 

Measurements have shown these spatial dependences and their properties 
(Wesfreid et al., 1978). In figure 33, one can see the spatial dependence of V,  on distance 
to a boundary of the cell for two values of E.  For the higher value of E (~=0-6),  the 
behaviour of the velocity is essentially represented along the whole cell by sinusoidal 
dependence V =  V1 sin(2nx/A) as previously reported. In contrast, for the lower value of 
E (E  = 0.005) the boundary effect penetrates deeply into the cell affecting about 10 rolls. 

The envelopes of the measured V=f(x) dependences are in very good agreement 
with the expected law <-tanh(x/t+), from which 5' can be calculated for different E 

values. A log log plot oft '  versus E (figure 34) shows not only that the power law is well 
obeyed in the experimental situation but also that the value of to is exactly that 
obtained by the calculation. 

Experiments on induced pretransitional rolls (Ra < Ra,) have been performed by 
imposing a local vertical velocity on an otherwise quiescent subcritical layer (Wesfreid 
et al. 1979), as can be seen in figure 35, where damped rolls are induced by a vertical 
stream in the centre of the layer. The envelopes of the velocity dependences are 
exponential as exp [ - Ix -xol/<] with xo the abscissa of the inducing stream. The value 
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Figure 35. Velocity profile of induced rolls for Ra < Ra,. The induction has been made by a thin 

jet crossing vertically the layer as indicated by the arrow on the figure. 

0.5 

Figure 36. Log-log plot of the measured correlation length versus E for subcritical Ra values. 

of 4 -  deduced from these profiles a t  different E values shows good agreement with the 
theoretical prediction (see figure 36). 

To summarize the convective properties near the threshold we have to return to the 
fundamental amplitude equation (32) 

dV ~3 ,azv 
T o  - = e V -  - + t o  2 

dt  V: ax 

valid in the simplest case of stable and perfect two-dimensional rolls. 
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Then, in these conditions, the Rayleigh-Benard convection can be entirely 

(a) The order parameter i.e. the velocity amplitude which grows as cl/'. 
(b) The time response z to a perturbation, which exhibits a critical slowing down 

such as z=zoc-'. 
(c) The influence length which controls the spatial response to a local perturbation 

and which diverges as {0~-1/2. 

described with three parameters, at least near threshold: 

4.4. Non-Boussinesq convection 
If the physical properties of the convective fluid depend strongly on the temperature, i.e. 
they are different at the top and at the bottom boundaries, there is an*asymmetry 
between the upward and the downward motions as we have already seen. Then the 
Landau potential 4 has to keep the odd terms in the expansion 

4 = 6 , + a , V +  2 a V' +- a3 v3+- a4 v4 
2 3 4 (35) 

from which we obtain an amplitude equation for the velocity V 

dV 
dt (36) z-= eV- a3 V' - a4V3 

with a,>O. 

state the solution for the velocity amplitude is 
We are in the presence of a subcritical bifurcation (see figure 37). In the stationary 

V=-+- 1 + 2 - c +  ... 
Vo 2 - 2  Vo [ 2 1 (37) 

where V, is the nonzero value at E = 0 (V, = a3/a4) and V, the value at E = 1.  In fact, we 
have only to consider the solution V= V0/2 + V0/2[1 +. . .] which is the only stable one. 
This value is that of the amplitude of the velocity at the centre of the hexagons which 
form the pattern; the amplitude of the velocity of opposite sign, in the periphery of the 
hexagons, is smaller as shown in figure 7 and figure 38 (conservation of the flux). 

0 

I" 
Ra ~ .. / . Ra, Ra, .. 

Figure 37. Non-Boussinesq convection. On the left: the corresponding asymmetric pseudo- 
potential. On the right: the scheme of the related subcritical bifurcation. 
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Figure 38. Velocity profiles in a hexagonal pattern. Measurements have been performed at the 
mid-height plane along three lines as indicated on (A). (Water, temperature at the top plate: 
4"C, d =  1 cm). 
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The behaviour is then like that of a transition of first order: at a given value Ra, 
(which may be different from 1707), there is ajump from V=O to I/= V,. Then, for low 
value of E, there is a linear variation of V with E .  When Ra is decreased, there is 
hysteresis, and the motion disappears at a value Ra; < Ra,, corresponding to a negative 
value E’ = - 1/,/4V1. This behaviour with hexagonal pattern was observed for various 
liquids (Somerscales and Dougherty 1970), (Hoard et al. 1970), and also with water near 
4°C for which the volume expansion coefficient was null at the top plate (M. Dubois 
et al. 1978 c). Meanwhile, the hexagonal pattern is only stable in a small E domain: when 
Ra is increased, there is further transformation of the hexagons into rolls, as predicted 
in the paper by F. H. Busse (1967 b). The principal reason for this transformation lies in 
the fact that hexagons are less efficient for heat transport than are the rolls. 

5. Dynamics of spatial organization 
Up to now, the basic properties of the convective state have been discussed in the 
framework of perfect structures near threshold, i.e. parallel two-dimensional rolls, 
whose variables at the equilibrium state are only a function of x and z.  We now consider 
the properties of natural structures, with defects, for which the whole pattern in the x, y 
plane has to be taken into account; then the formulation becomes three-dimensional 
and the calculations more complicated (Cross 1982)T. Note that if the profile along z is 
not considered, patterns in the x, y plane are two dimensional and comparisons may be 
imagined with two dimensional crystals. This concept; in particular, is dominant in 
some numerical studies (Manneville 1983). 

The two main problems with natural structures relate to the formation of the 
pattern and its dynamics. It was observed that, just after the convection has set in, there 
is a slow relaxation of the structure, which involves the motion of defects and the 
rearrangement of the pattern; this process takes a time which may be very long and is 
often very much longer than the horizontal diffusion time, this being of order L2/D, for 
a container of size L. Nevertheless in the limit of the observations to date with moderate 
and high Prandtl number fluids, it seems that the structure reaches a stationary 
equilibrium state, with the presence of some remaining defects (see for example figure 
1 1). On the other hand, with low Prandtl numbers fluids (helium (Ahlers and Behringer 
1978), mercury (Fauve et al. 1984)), it was observed that the chaotic state persists, giving 
a convective turbulent motion near threshold. Very few experimental data about this 
kind of turbulence are presently available. 

Thus, many questions remain unanswered about disordered structures, even at 
threshold. A first step has recently been made by the study of the dynamical behaviour 
of isolated defects in otherwise quasi-perfect structures and with high Pr fluids. 

5.1. Difusive modes in Rayleigh-Binard structures 
We look first at the stability of the regular periodic pattern against phase modulations. 
When the convective motions are spatially organized in a well ordered structure, the 
local velocity amplitude may be described by a single horizontal mode with 

t The presence of vertical vorticity, introduced by the three-dimensional aspect of the structure, generates 
secondary flows on the large scale-large compared to d- which have to be taken into account. Their 
influence will be higher as the Prandtl number is lower. 
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wavenumber a, at least far from the boundaries. So the vertical velocity component 
varies in a horizontal plane, along a direction x perpendicular to the roll axis as 

v, = O v, cos [ax + q ( x ,  y ,  t)] (38) 

"V ,  being the Fourier amplitude of the velocity, and q the phase defining the roll 
position. 
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Figure 39. Schematic representation of phase modulations. (a) Longitudinal mode (q , , ) .  
(b) Transverse mode (qJ. (The dotted lines represent the unperturbed pattern). 
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We can purposely perturb the phase cp of the roll pattern in order to study the 
dynamics of the phase cp of the periodic rolls, just as in the periodic arrangement of 
atoms in a crystal, we can study the dynamics of elastic waves. In the Rayleigh-Btnard 
'crystal' we can perturb the rolls (i.e. modulate the phase cp) according to two modes: 
one with a wavevector q II along the x axis, the second with a wavevector q, along the y 
axis (see figure 39). 

One can see that the first qI1 mode corresponds to a periodic compression and 
expansion of the roll structure (like a sound wave); this q mode is longitudinal. The 
second mode q, corresponds to a deformation of the rolls with a 'zigzag' shape: q, 
corresponds to a transverse mode, these two modes can be described by phase 
modulations such as: 

-longitudinal mode: cp =cpocos(qllx), (39) 

(40) transverse mode: cp'= cpb cos (q,y). 

The main difference from what happens in an ordinary crystal corresponds to the 
fact that in the Rayleigh-Btnard case (when the Prandtl number is large) the dynamics 
of phase perturbations is not propagative but diffusive: the system of rolls behaves as if 
the dissipation completely damps the motion, leading to a diffusion mechanism. 

The equation of phase diffusion has been theoretically derived in the Rayleigh- 
Benard case (Pomeau and Manneville, 1979) (Cross 1983) 

. 

where Dll and D, are the phase diffusion coefficients related to the longitudinal and the 
transverse modes respectively. 

The dynamics of the relaxation (or amplification) of phase perturbations is then 
given by exponential variations of the form: 

with characteristic times 

and 

Z , = ( D , ~ ~ ) - '  (44) 
respectively. 

We now must see how these predictions have been checked experimentally. In the 
experiment reported by V. Croquette and F. Schosseler (1982), the fluid (silicone oil) 
was confined in a rectangular plexiglass frame such that L, = 20d, L, = :l2d, with d the 
depth of the layer, equal to 0.5 cm and corresponding nearly to the fact that a large 
aspect ratio cell must be taken to approximate as well as possible to the infinite 
geometry (which is the assumption of the theory). 

In order to see the structure from above as well as to induce thermally the perturbed 
roll structure according to a well defined phase mode (as previously described) the top 
plate is of sapphire, transparent but a good thermal conductor, while the lower one is of 
polished copper (see figure 40). The whole structure was made visible from above by 
classical shadowgraphy and precise phase motions were detected by laser anemometry. 
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Figure 40. Photograph of a typical cell used for structure visualizations. The thermal regulation 
at the top (sapphire plate) and at the bottom (copper plate) is achieved by circulating water 
from thermostatic baths. 

Structures with a longitudinal or a transverse phase modulation were induced and the 
evolution of this modulation was studied, whence the dynamics of both modes were 
determined. 

5.1 .l. Longitudinal modes: The evolution of the longitudinal phase modulation was 
studied for two qll values (2n/L, and 4n/L,) with a=a,. As expected, the phase 
relaxation was found to be exponential with a characteristic time zq which varies 
quadratically with ql, ;  thus the dispersion relation (43) is confirmed. D ,I, calculated from 
the measurements of zll was: D II = 1.7 &O-5 cm2 s- in reasonably good agreement 
with the theoretical prediction, (2.23 cm2 s-'), as given by the relation 

( ~ - 4 . 3 1 6 ~ / d )  
D -  

I' - < ( E  - 1*446'/a2) (45) 

with 6 =a-a,. When 6/a<< 1, D, ,  equals 2.92 times D,. 
The positive value of Dll reflects the high stability of the roll structure against 

compression or expansion deformations. The maximum of stability holds for the 
maximum value of D i.e. for a = a,. Inside the curve of the Eckhaus instability D II 
remains positive but on the curve it vanishes (see figure 24); then, outside this region, D II 
becomes negative and a phase modulation would grow exponentially instead of 
decaying. 

5.1.2. Transverse modes: It is far more difficult to perform quantitative measurements 
for the transverse mode, because of its critical dependence on (a - ac). Recent 
calculations (Manneville and Piquemal 1983) have given the following complete 
expression for D ,  

D ,  = ($) (:) + CE 



574 P .  Berg6 and M .  Dubois 

Figure 41. Induced structure with zig-zag modulation before phase relaxation. (Silicone oil 
v = 0.1 stokes, d = 5 mm). 

Figure 42. Schematic illustration of secondary flow (broad line) associated with the curvature 
of the rolls. 

C is a quantity which depends on the Prandtl number and which may be taken as zero 
in the limit of infinite Prandtl number. 

Moreover, in an experimental situation, the effect is complicated by boundary 
effects. The results we report here correspond to the evolution of a zig-zag structure 
taking into account the two basic boundary effects: the phase modulation must vanish 
in the vicinity of the sidewalls (x = 0 and x = L,) and the rolI axes must be perpendicular 
to the sidewalls at y=O and y=L,. A photograph of the structure is shown 
schematically in figure 41 which corresponds to q ,  =4z/L,.  

In this experiment, the main aim was to point out the dependence of D ,  with a. The 
time evolution was once more an exponential relaxation except in the case of no 
evolution or amplification of the modulation. 

Results are presented in table 2 ((Ra - RaJRa, N 0.6). 
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a/a, 1.1 1 0.9 0.8 
7 5 0 0 s  1 6 0 0 s  00 amplification 

Table 2. 

For a/ac = 0.9, z becomes very large meaning that the induced modulation neither 
grows nor relaxes and for a/a, = 0.8 the modulation grows rather than relaxing. The 
phase modulation is then amplified, leading to the ‘zig-zag’ instability described by 
F. H. Busse (1978). 

Despite the low value of D, (around ten times smaller than that of D,,), the diffusion 
coefficient D, plays a very important role in the formation of the pattern. It intervenes 
in the force which acts on the curvature of the rolls axis and then in those which control 
the dynamics of defects, in particular dislocations, as we shall see later. 

5.2. Wavenumber selection 
The natural structures are not strictly periodic, though the size of the rolls is relatively 
homogeneous in the whole pattern; so it is not possible to associate with them a single 
wavevector. On the other hand they may be described by a wave packet, i.e. a 
distribution of wavevectors, which may be directly deduced from the two dimensional 
Fourier spectra of the structure, as described by Gollub and McCarriar (1982 b). In this 
situation, the wavenumber selection corresponds to the fact that this distribution is 
centred on a well defined wavevector a, and that the width of the distribution is quite 
narrow compared with the extension of the stable roll domain defined by F. H. Busse 
(Busse and Whitehead 1971, Busse 1978). 

Moreover, as already stated, the mean wavenumber a, depends on the Rayleigh 
number so that it is possible to say that the structure actually ‘chooses its wavenumber’. 

Theoretically the problem of this selection is far from easy. The first attempt based 
on the idea that the structure selects the wavenumber which maximizes the heat flux 
transported by the convection leads to predictions in total contradiction with the 
experiments. Recently the problem has received more accurate treatments but 
confrontation with experimental results is still needed to test the new ideas. 

Why is this problem so delicate in case of conGection? If we compare convection 
with what happens in crystals the dependence of the size of the unit cell of a crystal on its 
temperature no longer has any secret for the physicists. Crystals possess a free-energy 
function whose minimum at a given temperature defines completely the state of the 
system, i.e. the dimension of its unit cell. This is not the case for convective patterns for 
which it is not possible to find such a function, the best proof being that these patterns 
might oscillate or become turbulent and such a state cannot be described as the 
minimum of any potential. 

Several mechanisms have been proposed as responsible for the wavenumber 
selection. Some are related to the boundary conditions, such as the influence of the 
lateral boundaries which may extend to the whole pattern (Cross et al. 1983). In the 
same way, a slow spatial modulation of the Rayleigh number may favour the selection 
of a unique wavenumber (Cannel et al. 1983). 

Intrinsic convective properties may also be responsible for the choice of the 
wavelength; two examples are given in the next paragraph. The choice of the preferred 
mode is revealed in such cases by the motion of defects. 

5.2.1. Motion ofdislocations: To study the motion of dislocations, the simplest manner 
is to look at the evolution of a quasi perfect structure containing only one dislocation. 
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Figure 43. Induced structure of a roll pattern containing a dislocation. (Silicone oil 
v=O.O5stokes, d=2,5mm, a ,  =a,, az=(18/19)a,). 
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Figure 44. Experimental wavenumber selection compared to the D, = O  criterion ( P r  = 70). The 
reported wavenumber is the arithmetic mean of the two wavenumbers of the structure. The 
circles correspond to zero dislocation velocity. The squares are the velocity zeros, deduced 
at a constant Ra number from the fit of the measured velocities V, with the law 0;”. The 
crosses correspond to the mean wavenumber of the central part of a structure such as that 
shown in figure 45 and thus give the wavenumber selection by grain boundaries. The full 
line and the dotted line are the computed curves D, = 0, the full line being related to the 
case for which the secondary flows have been taken into account (see figure 42). 
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In an experimental device, where the number of rolls is finite, the structure under study 
(induced as described in section 3.2. and in figure 15) is in fact composed of two sets 
of rolls as shown in figure 43 with wavelengths LjN and L/(N+2); L is the greatest 
extension of the layer, N is the number of rolls in one part and N + 2 the number in the 
other part ( N  has been varied). These two sets of rolls are in phase right at the sidewalls 
and in phase opposition at the middle of the layer where the dislocation is produced. 

The study of the evolution of such structures has revealed some important features 
(Pocheau and Croquette 1984). 

(a) the dislocation always climbs and always favours the part of the structure with 
wavenumber closer to that corresponding to the condition D, = 0 at the &-value 
of the measurement (see figure 44). 

(b) In the majority of the cases, the velocity of the dislocation V, was uniform 
versus time. Its measured amplitude agrees reasonably with the expected 
relation 

where D ,  is given by eqn. (46). Then V, increases with the mean wavenumber of 
the structure and with the Rayleigh number; to give an order of magnitude, 
with silicone oil (Pr = 70) and d N 25 mm, V, = 0.52 cm/h at E = 1.37 and 5 cm/h 
at ~ = 4  for a mean wavenumber (Q)NU,. 

The line V, = 0 in the plane, Ra, a corresponds to the 'optimal' wavenumber 
for the corresponding experiment and thus defines the wavenumber selection 
line which is equivalent in the present case to the condition D, ~ 0 .  

Another type of mechanism leading to a wavenumber selection has confirmed this 
universal criterion. If we look at a perfect roll structure in a rectangular box whose 
lateral part is ended by grain boundary defects as shown in figure 45, the two rows of 
lateral rolls enable the principal set of rolls to expand or to contract, so as freely to 
adjust its wavelength. The corresponding wavenumbers, measured as a function of the 
Rayleigh number lie on the curve D,=O (see figure 44). (The conditions of the 
experiment were the same as those for the dislocation motions.) 

Figure 45. Induced structure with two grain boundaries: near the smaller lateral walls, two sets 
of rolls with axes perpendicular to those of the central part may expand or regress freely. 
(Silicone oil v = 0.05 stokes, d = 256  mm). 
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(4 
Figure 46. Three-dimensional convective structure. (a) Schematic representation of two 

perpendicular sets of rolls. (b) Photograph of a three dimensional pattern seen from above. 
(Silicone oil v = 0 1 stokes, d = 0 5  cm, Ra N_ 12 RaJ Notice the higher amplitude of the first 
set of rolls, as indicated by the large bright ‘lines’, in comparison with the less contrasted 
ones, which correspond to the new transverse set of rolls. 

5.3.  Approach to turbulent states 
The field of Rayleigh-Btnard convection is so broad that the authors apologize for the 
long discussion so far concerning the properties near threshold. When the Rayleigh 
number is increased, other interesting phenomena appear, related to new bifurcations. 
We wish to mention here only their essential features. 
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Figure 47. Appearance of the new component V,  of the velocity and dependence of its 
amplitude versus AT (Silicone oil v =  1 stokes, AK=Oo85). 

Figure 48. Topological frustration occurring when three-dimensional convection appears in an 
imperfect structure. This picture was obtained from a photograph (by ‘shadowgraphic’ 
technique) of a convective pattern at Ra N 10 Ra,. Notice that, as the principal rolls (broad 
lines) are equidistant, the secondary rolls (thin lines) are variable in size and contain 
numerous dislocations (continuous lines: uprising streams; dashed lines: downgoing 
streams). 
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The first phenomenon is the appearance of three dimensional motion, whose spatial 
properties depend essentially on the Prandtl number. Recall that for small E values, 
even if the velocity amplitude is dependent on x and y, the velocity field has only two 
components locally (except in the core of the defects), the horizontal one being 
perpendicular to the local roll axis. At a given value Ra,, which depends on the Prandtl 
number and the geometry of the pattern, a new feature appears. For low Prandtl 
number fluids (Pr<l), an instability occurs in the form of transverse waves 
propagating along the rolls axes (Busse 1972). This oscillatory instability is time 
dependent. 

For fluids with high Prandtl number (Pr> lo), a new set of rolls appears, 
superimposed on the first rolls and such that the axes of the two sets of rolls are 
pevendicular (see figure 46), so the velocity must be described by three components 
(V,, V ,  and VJ. When this new set of rolls is added to a previously perfect structure (as 
shown in figure 13), the corresponding pattern is stationary. Then the amplitude V,,,, 
of the new mode along the y direction varies in a manner similar to that of the first 
components V, and V,  at the first bifurcation at Ra, (see figure 47), i.e. as at a new second 
order phase transition (BergC and Dubois 1978). 

In disordered structures in high Pr fluids, the establishment of the new set of rolls 
leads to a new frustration. In fact, the new rolls have their own topological constraints: 
they have to be perpendicular to the first rolls and they must be arranged so as to define 
a new wavenumber a,, (see figure 48) in the whole pattern. In the case of the onset at Rat, 
the relaxation of the structure was able (by motion of defects) to release a large part of 
the topological constraints and therefore to reach an equilibrium state. However at this 
new bifurcation Ra2, the complexity of the pattern makes such a relaxation no longer 
possible. As far as we know from a few observations (Berg6 1981, Gollub et a!. 1982 a) a 
turbulent state is observed as soon as a disordered structure becomes three 
dimensional. This turbulence seems related to intermittent motion of the defects and 
rearrangement of the structure, which involve very long characteristic times (of the 
order of days in laboratory observations). 

At higher value of the Rayleigh number, ordered and disordered structures exhibit 
more developed turbulence (Krishnamurti, 1970; Busse and Whitehead 1974). 

Note that, in very small containers (r, N 2, ry 2: l), where only a few rolls are present 
and where the influence of the lateral walls is dominant, spatial turbulence appears only 
at very high values of the Ra number (Ra/Ra,=400 with Pr2: 130). So at intermediate 
Ra values periodic oscillatory regimes are observed and reliable observations in 
different fluids have clearly confirmed the existence of the deterministic chaos which is 
related to the presence of a small number of degrees of freedom. (Dubois 1982; Gollub 
and Benson 1980). 

6. Conclusion 
The Rayleigh-Btnard instability, i.e. the induction of motions in fluids submitted to 
destabilizing temperature gradients and related behaviour, are very common pheno- 
mena around us. Not only do these motions have considerable practical interest, for 
their transport properties and their time-dependent effects, but, in addition, the 
Rayleigh-Benard instability has revealed itself to be a very rich system for the physicist. 
In fact, it provides a model system fo; different branches of physics. First of all, the 
instability exhibits phase-transition properties near threshold for which the critical 
exponents follow a mean field approach. Secondly, the spatial properties of the natural 
structures involve concepts of topological arrangement, frustration and motions of 
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defects as in crystals. Finally, convection at high Ra number is a particularly good 
system in which to study the approach to turbulence, introduced at first by the 
competition between spatial modes or the development of dynamical instabilities. 
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